
laravel-restive Documentation
Release 1.0

Ian Wilson

Aug 28, 2020

Contents

1 Installation 3

2 Query Parser 5
2.1 Query Parser Filtering . 6
2.2 Query Parser Soft Deletes . 7
2.3 Query Parser Sorting . 7
2.4 Query Parser Columns . 8
2.5 Query Parser With . 8
2.6 Query Parser Joins . 8
2.7 Query Parser Scopes . 9
2.8 URL Parameter Format . 9

3 API Controllers 11
3.1 Routes . 11
3.2 Controller Definition . 11
3.3 Validation . 12
3.4 Api Endpoints . 12
3.5 Pagination . 13

4 Authorization 15

5 Testing 17

6 Contributing 19

7 Acknowledgements 21

8 License 23

9 Todo 25

i

ii

laravel-restive Documentation, Release 1.0

Restive is written for Laravel and provides a query parser and api controllers for CRUD type actions.

The query parser allows for complex filtering and sorting, converting the URI query into eloquent queries.

The API controller supports resource creation, reading, updating and deletion.

Reading, updating and deletion can all access the query parser.

e.g.

whereIn
whereBetween
sort

although note that the filtering can be more complex than just a simple where

Contents 1

laravel-restive Documentation, Release 1.0

2 Contents

CHAPTER 1

Installation

Installation is via composer.

composer require laravel-restive/restive

3

laravel-restive Documentation, Release 1.0

4 Chapter 1. Installation

CHAPTER 2

Query Parser

The query parser allows for complex filtering, sorting, the use of child relations and more.

Currently the filter parser supports

• with

• where

• orWhere

• whereIn

• orWhereIn

• whereNotIn

• orWhereNotIn

• whereBetween

• whereNotBetween

• orWhereBetween

• orWhereNotBetween

• withTrashed

• onlyTrashed

• scope

Sorting allows for multiple sort targets for ascending and descending sorts.

Includes allow for loading child models.

Joins are also supported

Query results by default return all columns for the query, however you can use the columns filter to restrict which
columns are returned.

5

laravel-restive Documentation, Release 1.0

2.1 Query Parser Filtering

2.1.1 Simple Where Clauses

Simple where clauses take the format of

where[]=fieldname:operator:value

for example

?where[]=id:eq:1

would equate to an eloquent query of

model::where('id', '=', 1)

The operators allowed are

• eq equates to =

• noteq equates to !=

• lte equates to <=

• gte equates to >=

• gt equates to >

• lt equates to <

• lk equates to LIKE

• nlk equates to NOT LIKE

Can also use orWhere

orWhere[]=id:eq:1

2.1.2 Where In clauses

Where In clauses take the form of

whereIn[]=fieldname:(comma separate list)

For example

whereIn[]=id:(1,2,3)

Can also use

• orWhereIn

• whereNotIn

• orWhereNotIn

6 Chapter 2. Query Parser

laravel-restive Documentation, Release 1.0

2.1.3 Where Between Clauses

Where Between clauses take the form of

whereBetween[]=fieldname:start:end

For example

whereBetween[]=age:18:45

Can also use

• orWhereBetween

• whereNotBetween

• orWhereNotBetween

2.2 Query Parser Soft Deletes

For models that support soft deletes, the query parser also provides 2 further filters.

2.2.1 With Trashed

To show all entries for the model, even when soft deleted use

withTrashed

2.2.2 Only Trashed

To show only entries for the model that have been soft deleted use

onlyTrashed

Note: Using withTrashed or onlyTrashed on models that do not support soft deletes will result in an
exception, with the error message being returned in the Json response.

e.g.

{"error":{"message":"Model does not support soft deletes","status_code":400}}

Warning: There is currently no way to force delete soft deleted items. This is on the todo list.

2.3 Query Parser Sorting

example

2.2. Query Parser Soft Deletes 7

laravel-restive Documentation, Release 1.0

sort[]=id,-name

would sort ascending on id then sort descending on name

2.4 Query Parser Columns

example

columns[]=id,name

will restrict the returned columns to just id and name.

2.5 Query Parser With

Warning: This feature is a bit experimental at the moment. In terms of testing i’ve only tried with a simple one
to many relationship. e.g. user->posts.

example

with[]=posts

The above assumes the query is being done on a model that has a relationship defined, and uses the Laravel Querbuilder
with method.

2.6 Query Parser Joins

Example

join[]=joinType:tableName:leftKey:rightKey

The join clause takes 4 parameters

• joinType - can be 1 of inner, left or cross

• tableName - the table to join on

• leftkey - the table field used on the left side of the Join on clause

• rightKey - the table field used on the right side of the Join on clause

More examples

join[]=inner:posts:posts.user_id:users.id

is the same as

$model->join('posts', 'posts.user_id', '=', 'users.id', 'inner');

8 Chapter 2. Query Parser

laravel-restive Documentation, Release 1.0

2.7 Query Parser Scopes

Warning: This feature is a bit experimental at the moment.

example

scope[]=myscope

Allows the use of Laravel scopes

the scope parameter should be the name of your scope less the preceding scope

e.g. If your scope is called scopeActive then you would just use active

2.8 URL Parameter Format

For GET e.g. index routes then the parser parameters can be placed in the url.

for example.

{api-uri}?columns[]=id,name&where[]=id:eq:1&orWhereBetween[]=age:(10,
15)&orWhereBetween[]=age:(50,60)

For DELETE and PUT the parser parameters are added to the body of the normal request, inside a parameter called
@parser

For example

$response = $this->put("/user", [
'email' => 'dirk2@holisticdetective.com',
'name' => 'Dirk Gently',
'age' => 45,
'@parser' => ['where' => ['email:eq:dirk@holisticdetective.com']]

]);

2.7. Query Parser Scopes 9

https://laravel.com/docs/7.x/eloquent#query-scopes

laravel-restive Documentation, Release 1.0

10 Chapter 2. Query Parser

CHAPTER 3

API Controllers

3.1 Routes

zcwilt/rest-api uses resource controllers. To define your routes for each controller you want, you will need to add the
following to your api routes file.

Restive::resource('modelName', 'controller');

modelName is the model name you want to have api access.

Controller is the name of your controller class.

As an example. To use the dummy simple controller supplied by the project, your routing entries would be.

Restive::resource('dummySimple', 'Api\DummySimpleController');

or to use the default User model that comes with Laravel

Restive::resource('user', 'Api\UserController');

For each Laravel Model that you want to use in the API you will need to create a Controller

3.2 Controller Definition

As mentioned above, for each Laravel model that you want to provide API access to you will need to create a Con-
troller.

This should be placed in the standard laravel location e.g. App/Http/Controllers or a sub directory. Our suggestion is
to use App/Http/Controllers/Api

The controller definition is fairly simple

11

laravel-restive Documentation, Release 1.0

<?php
namespace App\Http\Controllers\Api;

use Restive\Controllers\ApiController;

class DummySimpleController extends ApiController
{

protected $modelName = '\\Restive\\Models\\DummySimple';
}

Note: The protected $modelName defines the Eloquent Model that will be used by the controller. The factory
class used will try and resolve the model from either your projects App folder or from the App/Models folder, If the
Model is in one of these folders there is no need to namespace the model name. e.g. you could just do

protected $modelName = 'ModelName';

3.3 Validation

The base ApiController class that your controller extends contains calls to Laravels Validation system.

To use validation on your api request you must create a public rules method on the model your controller accesses.

e.g.

public function rules($id = 0)
{

return [
'email' => 'required|unique:zcwilt_users'.($id ? ",email,$id" : ''),
'name' => 'required'

];
}

Note: For update methods, the primary key value is passed as the $id parameter.

Warning: The controller uses $request->all() to pass request fields to the model update/create methods.
This could allow malicious users to update database fields that you did not want. You must therefore be very
explicit in your models as to which fields can be used in this way. e.g. using the $fillable property.

3.4 Api Endpoints

The api endpoints provided by the resource controller and extra controller methods provide the following route/actions

GET api/modelname -> controller@index : allows for query filtering on the url

GET api/modelname/{id} -> controller@show

12 Chapter 3. API Controllers

laravel-restive Documentation, Release 1.0

POST api/modelname -> controller@store
The request body should be an array of field/values
e.g ['name' => 'foo', 'email' => 'bar@test.com']

PUT api/modelname/{id} -> controller@update
The request body should be an array of field/values
e.g ['name' => 'foo', 'email' => 'bar@test.com']

Updates can use filtering e.g.
PUT api/modelname -> controller@update
while including something like
['@parser' => ['whereBetween' => ['age:21:65]]

DELETE api/modelname/{id} - controller@destroy

Deletes can use filtering e.g.
DELETE api/modelname -> controller@destroy
while including something like
['@parser' => ['whereBetween' => ['age:21:65]]

3.5 Pagination

All results from the index route are paginated using the standard Laravel paginator Therefore you can add a page
and per_page parameter to those queries. You can also return all results by adding paginate=no to the query
string.

3.5. Pagination 13

laravel-restive Documentation, Release 1.0

14 Chapter 3. API Controllers

CHAPTER 4

Authorization

This project/code is agnostic as to how you provide authorization for your API.

It’s expected that you may need to extend the Api Controller to provide authorization and/or role/scope based access.

There will be some more documentation here regarding Authorizartion etc

15

laravel-restive Documentation, Release 1.0

16 Chapter 4. Authorization

CHAPTER 5

Testing

Tests can be run within the package

``vendor/bin/phpunit``

or

``composer tests``

There is also a phpunit xml file for running tests with code coverage

``vendor/bin/phpunit -c phpunit-cc.xml``

or

``composer coverage``

Note: To run the code coverage tests, you will need to install xdebug

17

laravel-restive Documentation, Release 1.0

18 Chapter 5. Testing

CHAPTER 6

Contributing

See the - Contributing File

19

https://github.com/zcwilt/rest-api/blob/master/CONTRIBUTING.md/

laravel-restive Documentation, Release 1.0

20 Chapter 6. Contributing

CHAPTER 7

Acknowledgements

This project would not exist without the work of others.

Thanks go to

• Laravel Framework

• Read The Docs and Sphinx

From our composer.json

• orchestra/testbench

• phpunit

• codedungeon/phpunit-result-printer

• nunomaduro/collision

The following projects also provided inspiration.

• spatie/laravel-query-builder

• esbenp/bruno

• dingo/api

• Froiden/laravel-rest-api

Thanks also to the guys from Reddit who provided feedback

• /u/tusconflyer

• /u/somethingeneric

21

https://laravel.com/
https://readthedocs.org/
http://www.sphinx-doc.org/
https://github.com/orchestral/testbench/
https://phpunit.de/
https://github.com/mikeerickson/phpunit-pretty-result-printer
https://github.com/nunomaduro/collision
https://github.com/spatie/laravel-query-builder
https://github.com/esbenp/bruno
https://github.com/dingo/api
https://github.com/Froiden/laravel-rest-api
https://www.reddit.com/user/tucsonflyer
https://www.reddit.com/user/somethingeneric

laravel-restive Documentation, Release 1.0

22 Chapter 7. Acknowledgements

CHAPTER 8

License

This code is released under the MIT license.

See the License File

23

https://github.com/zcwilt/rest-api/blob/master/LICENSE/

laravel-restive Documentation, Release 1.0

24 Chapter 8. License

CHAPTER 9

Todo

• Allow for force deleting entries

• Document Exception Handling

• Update demo site with auth examples

25

	Installation
	Query Parser
	Query Parser Filtering
	Query Parser Soft Deletes
	Query Parser Sorting
	Query Parser Columns
	Query Parser With
	Query Parser Joins
	Query Parser Scopes
	URL Parameter Format

	API Controllers
	Routes
	Controller Definition
	Validation
	Api Endpoints
	Pagination

	Authorization
	Testing
	Contributing
	Acknowledgements
	License
	Todo

